
The materials in this Lecture can be found partially in Chapter 11 of the 
recommended textbook: “Digital Image Processing” by Gonzalez and Woods.  You 
can access the electronic version of this book via the following Imperial College 
library link:
https://imperial.alma.exlibrisgroup.com/leganto/public/44IMP_INST/lists/44618090
290001591?auth=SAML

This lecture will discuss three main topics:
1. Image resizing – up-sampling and down-sampling of images;
2. Pattern matching using normalised cross-correlation;
3. Scale Invariant Feature Transform (SIFT) for feature detectors and matching.
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Images come in all sizes.  To get the best results, it is important to perform 
computation with the appropriate resolution of images.
Using too high an image resolution (i.e. too many pixels) may make algorithms really 
slow without yield better results. Sometimes one may even make mistakes because 
too much details are being processed.

Using too low an image resolution may result in the wrong matching or identification 
due to missed features.
Resizing an image can go either ways:  increasing the resolution is called up-sampling; 
reducing the resolution is called subsampling or down-sampling.

Given an original image, often processing would involve building a stack of the image 
in different resolutions.  This is called an image pyramid. 
The large resolution is level 0.  Then we reduce the size by ½ each time until we get to 
a size that makes the image no longer containing useful information.
The question we should ask is: how down-sampling should be done?
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Multi-resolution Pyramid

 Important to process image at the appropriate resolution.
 Objective: good accuracy with minimal computation.
 Achieved by rescaling the image through sub-sampling or interpolation.



The obvious approach, but wrong, is to take every other pixel in both x and y 
directions.  However, Nyquist sampling theorem (as covered in DE2 Electronics 2) 
tells us that doing so can be dangerous.  
The slide above shows what happens using this naïve approach.  Reducing the 
sampling rate (i.e. subsampling the image) will reduce the ability to present rapidly 
changing pattern (or high frequency component in the spatial domain).  The checker 
pattern can no longer be retained and the 1/16 image does not like the original in 
the sense that the fast changing patterns appear like slowly changing pattern.  This 
effect is known as ALIASING. 
Therefore subsampling an image by dropping pixel is in danger of creating artifacts 
in the image which are not present in the original image.
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Beware of Aliasing

 Image size halved by taking every other pixel in both directions.
 High frequency patten now appears as low frequency.
 This is the result of ALIASING (DE2 Electronics 2).
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Here is another example.  The subsampled image after dropping alternative rows 
and columns of pixels create an image that has patterns that are NOT in the original.
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Aliasing creates false pattens

Source: F. Durand

Subsampling by 
dropping pixels



To avoid aliasing effect after subsampling, one needs to first limit the maximum 
frequency contents of the image.  Just as we learned in Electronics 2 during the 2nd 
year, the signal (i.e. image) needs to be filtered to remove high frequency signals.  
The best way to do so is to convolve the image with a Gaussian filter kernel. This is a 
lowpass filter which remove high frequency contents.  

To choose the correct Gaussian filter, we have to specify the standard deviation 𝜎, 
which determines the width of the Gaussian curve.  The rule of thumb is to use 𝜎 = 
0.6.  
To down-sample by a factor of 2, filter the image with the Gaussian filter kernel and 
then drop every other row and column.  Repeat this at each stage of down-sampling 
and you can safely build the multi-resolution pyramid for the image.
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Right way to Down-sample
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To perform up-sampling, we first expand the image, we first create the large image 
grid and fill them with the original image.  There will be pixel locations that are 
mapped directly to the original small image.  
One approach is to duplicate the value of the nearest neighbour.  This works to a 
certain degree but the image will be grainy.

A better approach is to determine the value of the missing pixel using interpolation.  
Two interpolation methods are commonly used.  The best is ‘bilinear’ interpolation. 
It is simply linear interpolation in both x and y direction – simply and fast to apply 
and gives good results. It only makes use of values from the nearest four 
neighbouring pixels.
Another is to use ‘bicubic’ interpolation.  This uses cubic polynomial in the x and y 
directions. This requires a lot more neighbouring pixel data and take much longer to 
calculate.
After interpolation, we have larger image with many more pixels.
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Right way to Up-sample
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This slide compares the results when we downsize an image using the wrong way of 
just dropping pixels, and that of the right of filtering before down-sampling (which is 
sometimes called decimation).
It is clear that dropping pixel creates artifacts while filtering before down-sampling 
simply blur the image. Don’t forget that the down-sampled image is much ¼ the size 
of the original. Therefore the blurring effect is not really noticeable. 
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Comparison of Right and Wrong way of resizing image

Dropping pixels

Gaussian filter then 
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Source: S. Seitz



The goal now is to match a given template to an image.  Here is another painting, 
this time not by van Gogh, but by Salvador Dali.  The goal is to match the “watch 
crown” template to that in the image.
If successful, it will find the crown as highlighted in the rectangle and return the 
location.
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Template matching Problem

 Given a template (e.g. image of an object), find the location in a large image.
 Usually template is small, image is large.
 Assumption: template is an exact copy of a part of the large image.
 Particularly useful for image alignment (registration).

where?

template

x

x



A common method to perform such a matching task is to use cross correlation.
We have already studied cross correlation in Lecture 5 when we study the process 
of filtering an image with a filter kernel.  The filtering process can be done either 
through correlation or convolution.
For template matching, we use the template as the kernel and perform correlation 
between it and the image at every pixel location to obtain a cross correlation 
function.  
However, the magnitude of the result is very much image and template dependent.  
A high intensity image will have maximum values that are much larger than a low 
intensity image.
The solution to this problem is to normalize the results to a range of -1 to +1.  This is 
achieved using the formulae above.

Essentially we remove the mean value of both the image patch (within the kernel 
window) and the template, before performing the multiplication and add.
Finally, we scale the results to the product of variance between the image and the 
template.  

As can be seen, if the template is an exact match to the image (within the template 
window), the result of this calculation is +1.
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Template matching by Normalized Cross Correlation

 Given an image 𝑓(𝑥, 𝑦), and a  template 𝑡(𝑢, 𝑣), cross correlation is the same 
as performing image filter with 𝑡(𝑢, 𝑣) as the kernel (see Lecture 5, slides 2-7.

 However,  here we use normalized cross correlation (NCC) 𝛾, where 𝛾	is 
normalised to the range of +1 to -1.

 The definition of 𝛾 is:

𝛾(𝑥, 𝑦) =
∑!,#(𝑓 𝑥, 𝑦 − ̅𝑓$,%)	(𝑡 𝑥 − 𝑢, 𝑦 − 𝑣 − ̅𝑡)

∑!,# 𝑓 𝑥, 𝑦 	−	 ̅𝑓$,%
& 	∑!,# 𝑡 𝑥 − 𝑢, 𝑦 − 𝑣 − ̅𝑡 &

 where: 
̅𝑓$,% is the mean value of 𝑓(𝑥, 𝑦) within the area of the template 𝑡 𝑢, 𝑣 , and

 ̅𝑡 is the mean value of the template.
 Using this normalization, 𝛾 𝑥, 𝑦  is independent of changes in brightness 

(mean) or contrast (standard deviation) of the image.



This is an example of matching the “watch crown” template to the Dali painting 
using normalized cross correlation as explained in the previous slide.
The resulting function 𝛾 is plot here.  The peak of the function (with value of +1 
indicating an exact match) provide the location of the template in the image.

Note that this method requires the template being exactly the same in size and 
orientation as that found in the image.  There are three more “watch crowns” in this 
painting as highlighted.  These are not found using the NCC method because they 
are not an exact match to the template.
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The Dali painting example

normalized
cross correlation
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So, we need a better method to do matching.  One approach is not just working 
with pixels, but extract features from a collection of pixels in an image. Then 
perform matching of the feature based on its characteristics.
We want a method that can match features that are different in size, orientation, 
brightness, and even when it is partially covered.

The remaining slides in this lecture is to explain a ground-breaking technique 
introduced by Lowe in 2004, known as the Scale Invariant Feature Transform (SIFT).

Lecture 10 Slide 11PYKC 25 Feb 2025 DE4 – Design of Visual Systems

General feature matching problem

Where?

 Problems in matching objects in general:
1. Different size (or scale)
2. Different orientation
3. Different brightness and contrast
4. Partially covered (occlusion)



Here are two examples of what SIFT can be used to solve harder visual processing 
tasks.
The first is to take a collate of images of the same scene and stitch them together 
automatically to form a panoramic photo.  This is fundamentally an image 
registration problem. If we can find the same features in different small photos, we 
can align them together by stitching.
Another problem is that of feature tracking for video sequences.  Here are two 
frames from a football game video recording. SIFT can be used to track the 
highlighted player from one frame to the next.
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Harder Visual Processing

Stitching Tracking



Before we consider how to identify features, let us examine the different types of 
features that are useful to detect.
We have already study the detection of points and corners. We have also learned 
about line detection using Hough Transforms.  
There is one last type of interesting features – that of a “blob”.  It turns out that in 
most images, the most interesting features are not lines or edges, but blobs – a 
collection of pixel around a certain pixel location the includes interesting 
characteristics.
The right most image here shows that the players in a football games are the 
interesting items. The centres of the blobs are the locations, and the yellow shapes 
that enclose the blobs gives their sizes.  Finally, each blob will have a principal 
orientation, although they are all pointing up in this case (because the players are all 
standing).
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What are interesting features?

 To handle a scene, need to identify and locate interesting features.
 These could be:

1. Points, particularly corners
2. Lines or shapes (e.g. circles)
3. Blobs or patches

Corners Line and edges Blobs



SIFT is probably the most significant method in detecting “blobs” in an image.  
The output results from the SIFT detector is a list (or array) of features called 
interest points, each has four useful pieces of information:
1. Location – the coordinate of the centre of a blob gives the location of that blob.
2. Scale – as shown in the image above, there are many packs of sweets, and they 

are of different sizes.
3. Orientations – different packets are oriented in different directions.

4. Signature (or Descriptor) – to identify different blobs, SIFT provides each a 
“unique” signature.  So if two blobs are the same, but at different locations and 
of different size and rotation, SIFT will give them the same signature. If they 
appear differently, then SIFT will give them different signatures.
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SIFT – A Blob Feature Detection Method

 SIFT stands for Scale Invariant Feature Transform.
 Useful for image alignment (registration), object tracking and 2D object 

recognition.
 Proposed by Lowe in 2004 to identify interesting blob features that are 

independent of their size, orientation and intensity (paper on webpage).
 Output from SIFT detector are these properties of features:

1. Locations of the blobs
2. Scales (or sizes) of the blobs
3. Orientations of the blobs
4. Signatures or descriptors for the blobs

x

Descriptor or signature



Before we explain how SIFT achieve scale invariant (i.e. insensitive to size), let us 
consider the Gaussian filter because SIFT relies heavily on the Gaussian function.
To simplify the explanation, let us consider a 1D image (such as the pixel along a line 
of an image).  Show here is an edge corrupted by noise.
Applying a Gaussian filter through convoluting the image 𝑓(𝑥) with a Gaussian 
function 𝑛!. The end result is a blurred edge but with noise significantly removed.
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Recap on Gaussian Filter – noise removal

1D image 𝑓

Gaussian kernel  
𝑛'

Clean	edge	
𝑛! ∗ 𝑓

*



If we apply a kernel which is the 1st derivative of the Gaussian function, we have an 
output where the peak is aligned with the location of the edge as shown.
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1st Derivative of Gaussian – Edge detection

1D image 𝑓

1st Derivative 
∇	(𝑛')

Peak detects 
edge

∇	(𝑛') ∗ 𝑓

*



Finally, if we apply the 2nd derivative of the Gaussian as the kernel to filter the 
image, the result is shown at the bottom plot.  Here the zero-cross of the output is 
aligned with the edge of the 1D image.

Remember this three slides because they become very useful later.
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2nd Derivative of Gaussian – Edge detection

1D image 𝑓

2nd derivative 
∇(	(𝑛')

Zero crossing 
detects edge
∇(	(𝑛') ∗ 𝑓

*



Our goal is to detect blobs.  However, there are many type and shape of blobs as 
shown here. Most importantly, they are of different sizes. 1D case, size is equivalent 
to the width of the “blob”.
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Different types of Blobs in 1D

 Different shape and SIZES.



Let us consider the three blobs here: A is a narrow blob, B is a wider blob, and C is 
the widest of the three.  We will focus on the use of 2nd derivatives to detect the 
blobs. That is, we shall focus on the waveforms on the fourth row in the slide.
If we apply the 2nd derivative of the Gaussian to the blob, we found that they have 
different zero-crossing as shown – some wider and some narrower. More 
importantly the negative peak of the output after filtering with the 2nd derivative is 
of different height (or magnitude). 
If we use a Gaussian kernel with smaller 𝜎 (a narrow Gaussian), the magnitude is 
larger.  If we widen the Gaussian kernel with a larger 𝜎, the magnitude is smaller.  
To make the magnitude not dependent of 𝜎, we can normalize the 2nd derivative of 
the Gaussian by multiplying the kernel with 𝜎".  This is known as the 𝝈-normalized 
2nd derivative of the Gaussian.
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Normalized 2nd Derivative of Gaussian

1D image of blob 
𝑓

Gaussian kernel  
𝑛'

2nd Derivative 
𝜕2𝑛'
𝜕𝑥2

2nd derivative 
)!	+"
),!  * f(x)

Normalised 2nd 
derivative

𝜎( )
!	+"
),!  * f(x)



Let us now apply the normalized 2nd derivative to the three sizes of blobs. 
This slides is animated using normalized 2nd derivative of a Gaussian kernel having 
increasing value of 𝜎.   It is difficult to see what happens without the animation. 
(Therefore, the slide is broken up into many frames on the PDF version.)
Basically, with a given 𝜎 value, the largest negative peak of bottom waveform 
happens for blob A.  When we double 𝜎, blob B yields the largest negative peak.  
Finally, the widest 𝜎 results in blob C producing the largest peak. (Sometime, 
negative peak is also called an extrema, which is either positive or negative.)

In other words, if we apply the normalized 2nd derivatives to every location of the 
image and vary the 𝜎 values, we can find which value of 𝜎	will give the largest 
extrema. This means that we can successfully deduce the size of the blob because it 
is related to the value of 𝜎.
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Effect of changing 𝝈 on Normalized 2nd Derivatives

1D image of blob 
𝑓

Gaussian kernel  
𝑛'

1st Derivative 
𝜕𝑛'
𝜕𝑥

Use 2nd derivative 
)!	+"
),!  * f(x)

Normalised 2nd 
derivative

𝜎( )
!	+"
),!  * f(x)



To recap, as we change the value of 𝜎, we keep looking for the local extrema 
(negative peak) in the normalized 2nd derivative of the image.  
The values of 𝜎 that gives the maximum negative normalized 2nd derivative, we 
denote as 𝜎∗, provides a measure of the size of possible blobs.  This therefore 
characterizes the size of potential “blobs”.  This collection of 𝜎∗ values is known as 
the Characteristic Scale.

Lecture 10 Slide 21PYKC 25 Feb 2025 DE4 – Design of Visual Systems

Characteristic Scale of Blobs

1D image of blob 
𝑓

Gaussian kernel  
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1st Derivative 
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This slides shows the characteristic scale for the three blobs as 𝜎$∗, 𝜎%∗  and 𝜎&∗.
Since the characteristic scale 𝜎$∗ is a measure of the size of the blob, we can make 
an approximation in assuming that the ratio of blobs is approximately equal to the 
ratio of their characteristic scale value.
Instead of using a continuous varying value of 𝜎, which is obviously not possible, we 
use a base value of 𝜎, denoted as 𝜎'. We then increase 𝜎 by multiply it with a 
scaling factor s or 𝑠" or 𝑠( and so on.  That is:

𝜎)∗ = 𝑠) 𝜎', where 𝑘 = 1, 2, 3, … . .
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Characteristic Scale Measures Size of a Blob

𝜎1∗ = 𝜎2 𝜎3∗ = 2𝜎2 𝜎4∗ = 3𝜎2

 Characteristic Scale: The 𝜎 value at which 𝜎-normalised 2nd derivative 
reaches its peak value.

 Characteristic Scale is a valid measure of the SIZE of the blob. That is:

𝑠𝑖𝑧𝑒	𝑜𝑓	𝑏𝑙𝑜𝑏	𝐴
𝑠𝑖𝑧𝑒	𝑜𝑓	𝑏𝑙𝑜𝑏	𝐵 ≈

𝜎-∗

𝜎/∗



Let us recap how we detect the location and size of a 1D blob.

We first convolve the 1D signal 𝑓 𝑥  with a set of  normalized 2nd derivative with 
different 𝜎 scales, (𝜎', 𝜎*, … , 𝜎)).
The location of the blobs is given by the local extrema (or negative peaks) of the 
output of that convolution.  
The local extrema at different 𝜎 scales are compared. If there exists an extremum 
whose peak value is significantly larger than others at different values of 𝜎, it 
indicates that there is a candidate for a blob.  In this way, we can detect the 
potential existence of a blob.  
The location of the extremum, 𝑥∗,  is the centre of the blob.
The characteristic scale 𝜎∗ is the size of the blob.

If all local extrema are more or less the same, it indicates that there is no interesting 
feature there.
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Summary on Steps of Blob Detection in 1D

1. Given a 1D signal 𝑓 𝑥 , convolve it with 𝜎-normalized 2nd derivative function:

 Compute: 𝜎& 5
061
5!0

∗ 𝑓 𝑥  at different  scales  (𝜎2, 𝜎7, … , 𝜎8).

2. Find 𝑥∗, 𝜎∗ = max
(,,')

𝜎& 5
061
5!0 ∗ 𝑓 𝑥

3. Blob position = 𝑥∗

4. Blob size = 𝜎∗



Now let us extend the 1D case to 2D.  
The 2nd derivative of a 2D image is also called the Laplacian as shown in the slide.  
The 2D Gaussian function is:

𝑛!(𝑥, 𝑦) = 𝐾𝑒
!"#$"

"%"  
The shape of this function is as shown in the slide.

The Laplacian of the Gaussian (LoG) (Lecture 8 slide 9) is:

∇!𝑛" 𝑥, 𝑦 =
𝑥! +𝑦! −2𝜎!

𝜎# 	𝑒$
%"&'"
!""

and its shape is as shown which is often called the inverted Mexican hat.  
Again, just like the 1D case, if we use the LoG as a kernel, the range of values of the 
output is dependent on the value of 𝜎.  Therefore, we use the normalized form of 
LoG by multiplying the LoG function with 𝜎" to give us the NLoG, which is the same 
shape as LoG, but scaled appropriately.
The location of blobs can now be found by convolving our 2D image with the NLoG 
kernel.
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Blob Detection in 2D

 For 2D image 𝐼(𝑥, 𝑦), use Normalized Laplacian of Gaussian (NLoG) for 
blob detection:

 Location of blobs found by Local Extrema after applying NLoG at many 
scales.



Here is an example of using NLoG to detect the location AND scale of potential 
blobs.
The image 𝐼(𝑥+ , 𝑦+) is a man falling.  The current location of interest is that shown 
with a black dot – his nose.  
Convolving this part of the image with the NLoG kernel at different scale space 
(𝜎', 𝜎*, ..) produces the output vs 𝜎 plot as shown. It is clear that there is an 
extremum at 𝜎*.  
This indicates two things:  
1) there is indeed a potential interesting blob at this location x∗ = (𝑥+ , 𝑦+); 
2) the characteristic scale 𝜎∗ , and hence the size, of this blob is 𝜎*.
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Example of Detecting an Interesting Blob

𝑆(𝑥, 𝑦, 𝜎2) 𝑆(𝑥, 𝑦, 𝜎3) 𝑆(𝑥, 𝑦, 𝜎() 𝑆(𝑥, 𝑦, 𝜎4)

Source: Lindeberg



Let us now consider the new location at the black dot which is on the uniform 
background.  Here the plot of  𝑁𝐿𝑜𝑔 ∗ 𝐼(𝑥, 𝑦) against the different values of 𝜎 is 
very flat. Therefore, it indicates that there is no blob present at this location.
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Example of Detecting a non-blob

𝑆(𝑥, 𝑦, 𝜎2) 𝑆(𝑥, 𝑦, 𝜎3) 𝑆(𝑥, 𝑦, 𝜎() 𝑆(𝑥, 𝑦, 𝜎4)

Source: Lindeberg



This slides summarizes how blobs in an imaged can be detected, located and sized 
using NloG kernels of different 𝜎 values.
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Summary on Steps of Blob Detection in 2D

1. Given an image 𝐼 𝑥, 𝑦 , convolve it with 𝑁𝐿𝑜𝐺 at many scales of 𝜎	.

 Compute: (𝜎&	∇&𝑛9) ∗ 𝐼 𝑥, 𝑦  at different scale (𝜎2, 𝜎7, … , 𝜎8).

2. Find 𝑥∗, 𝑦∗, 𝜎∗ = max
(,,5,')

(𝜎&	∇&𝑛9) ∗ 𝐼 𝑥, 𝑦

3. Blob position = (𝑥∗, 𝑦∗)

4. Blob size = 𝜎∗



Now before we start considering the SIFT detector, we need to learn about a good 
approximation to the NLoG function.
If we plot the function NLoG in 1D, which is the Laplacian of the Gaussian, we found 
the curve in blue above. 

However, if we plot the Difference of Gaussian (DoG) which is defined as the 
difference between two Gaussian functions, one with the standard deviation 𝜎, and 
another with s𝜎, we have the red curve. As can be seen, the two are very similar to 
each other.  

In other words, instead of calculating the normalized Laplacian of the Gaussian 
(NLoG), we can approximate it by simply taking the difference of the Gaussians 
(DoG).  This therefore bypass both the Laplacian operation and the normalization 
calculation – much simpler to do!
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DoG is fast approximation of NLoG

 Is there a faster way to compute NLoG?
 Difference of Gaussian (DoG):  

𝐷𝑜𝐺 = (𝑛:9 − 𝑛9) ≈ 𝑠 − 1 𝜎&∇&𝑛_𝜎
 𝑠 is different multipliers (octave) of 𝜎.

NLoG

𝐷𝑜𝐺 ≈ 𝑠 − 1 𝑁𝐿𝑜𝐺      𝑠 > 𝟏



Now we are ready to explain how SIFT extracts interesting points (centres of blobs) 
from an image.  Remember, convolving an image with a Laplacian kernel is the same 
as convolving the image with a Gaussian kernel then take the Laplacian because 
both convolution and differentiation operations are linear and the order of the 
operations does not matter.
Given an image 𝐼(𝑥, 𝑦), we first produce a pyramid of images, each filtered with a 
Gaussian filter with increasing values of 𝜎: (𝜎, s𝜎, 𝑠"𝜎,… , 𝑠)𝜎).  This gives us the 
Gaussian Scale Space 𝑆(𝑥, 𝑦, 𝜎) which a stack of Gaussina filtered images.
We now calculate the Difference of Gaussians (DoG) between successive layers, as 
shown in the slide, as an approximation of the NLoG.  
We now have a stack of DoG “images” which contains information relating to 
potentially interesting blobs!
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Extracting SIFT Interest Points (1)

Source: Lowe

Image
𝐼(𝑥, 𝑦)

Gaussian Scale 
Space
𝑆(𝑥, 𝑦, 𝜎)

Difference of Gaussians 
(DoG)

≈ 𝑠 − 1 𝜎(∇(𝑆(𝑥, 𝑦, 𝜎)



From the DoG pyramid (of increasing value of 𝜎), we can now search for extrema at 
each location ACROSS the stack within a 3x3 grid.  These extrema provide potential 
interesting points, i.e. centre of potential blobs.
This gives  us a stack of candidates for interesting points (where blobs could be 
located) for each scale.
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Extracting SIFT Interest Points (2)

Source: Lowe

Candidates for 
Interest Point

Find peaks 
(extrema) in every 

3x3 grid

Difference of Gaussians 
(DoG)

≈ 𝑠 −1 𝜎#∇#𝑆(𝑥, 𝑦, 𝜎)



Let us examine the pyramid stack on the left. Each layer represents potential 
candidates of blobs and interesting points AT THAT SCALE of 𝜎.  There can be many 
potential candidates in each layer.
The next step is to eliminate “weak” interesting points. This could be done by 
thresholding at each layer. Then merge these together as shown in the final image 
overlay with these blob features. The centre of each white circle gives us the 
location of the blob. The radius of the circle gives us the size of that blob.
We have now successfully identified interesting features (blobs) in an image, 
knowing both their locations and sizes.  Next, we need to find their orientations.
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Extracting SIFT Interest Points (3)

Source: Lowe

Candidates for 
Interest Point

SIFT Interest Points after 
removing weak peaks

Annotated SIFT Features



Here is the result of applying the SIFT detector to the Salvador painting.  In applying 
the SIFT feature detector, there are several parameters that a user can specify to 
affect the results:
1. 𝜎' - the width of the Gaussian for the base layer of the scale space.  The 

different layer will have the sigma value increased as 𝑠)𝜎', where 𝑘 = 1,2,3….
2. 𝑠 – the scaling factor between the successive layers of the scale space pyramid.
3. N – the maximum number of most ”interesting” features.  SIFT detectortends to 

produce a very large number of potential interesting points (or blobs).  For each 
blob, the extremum value provides a metric to indicate how “interesting” that 
blob is.  After rank ordering the entire list with descending order of the metric, 
one can choose the most significant N features to process and discard the rest.
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Example of SIFT Interest Points Detector



Here is an example of SIFT being scale invariant. 
A blob is located at the centre of the flame for both images dicated by the black dot.  
The two images will have different scale for this flame blob as shown.  With the 
knowledge of the scale 𝜎*∗ and 𝜎"∗, they can be rescaled to be the same size.
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SIFT Scale Invariance

Source: Mikolajczyk

Ratio of Blob Sizes

= 3F
∗

3G
∗



We now have features that we know are potentially interesting. We know their 
locations and their sizes.  Now we will find the blob’s orientation.
Shown here is a blob at some location of the image. The interesting point is the 
centre of the blue circle which has a bounding square shown in the green grid.
For each pixel within this square, we can compute the gradient in x and y direction 
(i.e. the 1st derivatives).  The orientation of each pixel is given by the arc-tangent of  
the ratio of 𝜕𝐼/𝜕𝑦 and 𝜕𝐼/𝜕𝑥. 
This angle is then quantized into eight orientations: pointing up, down, left, right, 
and four more for the two diagonals.

We can now build a histogram of orientations within this patch (blob).  From the 
histogram, we deduce that the principal orientation of this feature being the angle 
that has the highest count value in the histogram.
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Detect Feature Orientation

 Image gradient directions is calculated by:

𝜃 = tanH7
𝜕𝐼/𝜕𝑦
𝜕𝐼/𝜕𝑥

 Build histogram of direction for every pixel (8 directions).

 Principle Orientation is the one with highest count.



This is an example of applying the SIFT orientation method.  The left image has a 
feature centred at the letter ’G’.  The right image has the same image rotated.  
After determine the orientation of the feature in the right image, we can apply the 
affine transform (Lab 1) to re-orient the image so that the feature is now also 
pointing up.
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SIFT Rotation Invariance

 Correct rotation based on principal orientation.
 We can now match objects of different scale and different orientation.



The final step of the SIFT detector is to somehow give find a signature to the blob. 
This is called the feature’s DESCRIPTOR.
In SIFT, we ignore the pixel colour or intensity because we want the feature detector 
to be invariant to lighting and contrast.  Instead, we only use the histogram of 
orientations.

The procedure involve dividing the orientations of pixels within the blob (in a square 
grid) into four quadrants. For each quadrant, we compute the histogram of 
orientations for the quadrant’s pixels. We then concatenate these four sub-
histograms together to form one histogram with 8x4 = 32 bins.  Now the profile of 
these bins forms the signature or descriptor for this blob.
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SIFT Descriptor (signature)

Image gradients

 Normalized Histogram is the featured descriptor or signature.
 It is invariant to Rotation, Scaling and Brightness.



Once we have the descriptors of features, we can match them between two images.
How?  We can quantify how similar is a feature in one image to that of another 
feature in a second image.  This can be achieved using one of three popular 
measures of “distance”.
1. L2 Distance – this is common Euclidean distance calculation between the 

histogram 𝐻* to another feature descriptor (histogram) 𝐻". The shorter the 
distance, the better the match. Exact match is indicated by d = 0.

2. Normalized cross correlation – we have done NCC before. This is now applied to 
the two histograms for the two features.  The larger the distance, the better the 
back. Since this is normalized, d = 1 indicates a perfect match.

3. Intersection – this computes the bin-to-bin overlaps between the two 
histogram. The large the distance, the higher the overlap of the histogram and 
better the match.
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Matching of SIFT Descriptors

 Goal, match two SIFT features from two images, with descriptors 𝐻7 𝑘  and 
𝐻& 𝑘 . (These are histograms of orientations.)

 Possible measures:
1. L2 Distance:    

𝑑 𝐻3, 𝐻( = ∑6 𝐻3 𝑘 −𝐻( 𝑘
(. (Smaller 𝑑 = better match.)

2. Normalized Correlation:

  𝑑 𝐻7, 𝐻& = ∑7[(K8 8 HK8)(K0 8 HK0)]

∑7 K8 8 HK8 0 ∑7 K0 8 HK0 0
,   

 where  𝐻9 =
3
:
	∑6;3: 𝐻9(𝑘). (Larger 𝑑 = better match.)

3. Intersection:

𝑑 𝐻7, 𝐻& =L
8

min(𝐻7 𝑘 ,𝐻& 𝑘 )

(Larger 𝑑 = better match.)



This is the results of matching the Dali painting at the original scale to that ¼ the 
size.  As you can see the features are successfully detected and the matching is very 
good. It demonstrates that SIFT is indeed scale invariant, and the descriptors for 
features fromt the two images were matched very well.
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SIFT Results: Scale Invariance

Original 
Image

1/4 size
Image



Here are three set of images with different orientations.  
All feature points are successfully identified and matched.
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SIFT Results: Rotation Invariance



This is another example of SIFT successfully identifying the feature points in two 
separate photos of the same mountain scene.
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Photo Stitching using SIFT (1)

Image 2Image 1

Matched SIFT
Interest Points



These two images can then be stitched together to form a panoramic photo.
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Photo Stitching using SIFT (2)



Finally, this is a sequence of frames in a video where the green person is 
successfully tracked from frame to frame.  Further, the other individuals are all 
tracked showing that the SIFT algorithm is useful in tactking multiple features 
(blobs) in images simultaneously.
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SIFT for tracking



After Lowe published his seminal paper in 2004, there have been many modified 
methods building on Lowe’s idea of identifying features in scale, orientation and 
intensity independent manner, producing the signature of features and then 
perform matching of these features.
There is not sufficient time to cover any of these improved algorithm developed 
from the SIFT detector since its introduction. The slide here shows the variety of 
feature detection methods implemented in Matlab which can be used for different 
applications.  Of particular importance in addition to SIFT is the SURF method.
By now you should realize that in processing visual information, there is not a single 
killer algorithm or method that works for ANY images.  Instead, depending of the 
nature of the image, one would need to deploy tools from a large collections of 
methods and tricks, depending on the goals that the designer want to achieve.
Here are a number of Matlab documentation pages that you may find useful:
• https://uk.mathworks.com/help/vision/ug/local-feature-detection-and-

extraction.html
• https://uk.mathworks.com/help/vision/ug/feature-based-panoramic-image-

stitching.html
• https://uk.mathworks.com/help/vision/ug/point-feature-types.html
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Matlab Support for Feature Detection

 Many other feature detection methods have been proposed since Lowe’s 
paper in 2004.

 Here are the different algorithms that are implemented in Matlab, some of 
these are extensions to SIFT.

https://uk.mathworks.com/help/vision/ug/local-feature-detection-and-extraction.html
https://uk.mathworks.com/help/vision/ug/local-feature-detection-and-extraction.html
https://uk.mathworks.com/help/vision/ug/feature-based-panoramic-image-stitching.html
https://uk.mathworks.com/help/vision/ug/feature-based-panoramic-image-stitching.html
https://uk.mathworks.com/help/vision/ug/point-feature-types.html

